on the spectra of some matrices derived from two quadratic matrices
نویسندگان
چکیده
begin{abstract} the relations between the spectrum of the matrix $q+r$ and the spectra of the matrices $(gamma + delta)q+(alpha + beta)r-qr-rq$, $qr-rq$, $alpha beta r-qrq$, $alpha rqr-(qr)^{2}$, and $beta r-qr$ have been given on condition that the matrix $q+r$ is diagonalizable, where $q$, $r$ are ${alpha, beta}$-quadratic matrix and ${gamma, delta}$-quadratic matrix, respectively, of order $n$. end{abstract}
منابع مشابه
On the spectra of some matrices derived from two quadratic matrices
begin{abstract} The relations between the spectrum of the matrix $Q+R$ and the spectra of the matrices $(gamma + delta)Q+(alpha + beta)R-QR-RQ$, $QR-RQ$, $alpha beta R-QRQ$, $alpha RQR-(QR)^{2}$, and $beta R-QR$ have been given on condition that the matrix $Q+R$ is diagonalizable, where $Q$, $R$ are ${alpha, beta}$-quadratic matrix and ${gamma, delta}$-quadratic matrix, respectively, of ord...
متن کاملOn the square root of quadratic matrices
Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.
متن کاملOn Some Special Classes of Sonnenschein Matrices
In this paper we consider the special classes of Sonnenschein matrices, namely the Karamata matrices $K[alpha,beta]=left(a_{n,k}right)$ with the entries [{a_{n,k}} = sumlimits_{v = 0}^k {left( begin{array}{l} n\ v end{array} right){{left( {1 - alpha - beta } right)}^v}{alpha ^{n - v}}left( begin{array}{l} n + k - v - 1\ ,,,,,,,,,,k...
متن کاملOn the eigenvalues of some matrices based on vertex degree
The aim of this paper is to compute some bounds of forgotten index and then we present spectral properties of this index. In continuing, we define a new version of energy namely ISI energy corresponded to the ISI index and then we determine some bounds for it.
متن کاملOn generalized quadratic matrices
Abstract Extending an approach considered by Radjawi and Rosenthal (2002), we investigate the set of square matrices whose square equals a linear combination of the matrix itself and an idempotent matrix. Special attention is paid to the Moore-Penrose and group inverse of matrices belonging to this set. References: Radjavi, H. and P. Rosenthal (2002). On commutators of idempotents. Linear and M...
متن کاملSome results on the polynomial numerical hulls of matrices
In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyناشر: iranian mathematical society (ims)
ISSN 1017-060X
دوره 39
شماره 2 2013
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023